Nanoparticles in food – Analytical methods for detection and characterisation

Stefan Weigel
5 Years Nanotechnology Dialogue
The frame

- FP7-Project (Theme 2: Food, Agriculture and Fisheries, and Biotechnologies),
- Collaborative project, Grant agreement n° 245162, 3 M€ EC contribution
- Duration 01/2010 - 09/2013
- 10 partners
- Coordinator: RIKILT
Focus

- **Food safety**
 - presence (yes/no)
 - identity (chem. composition, size)
 - concentration (mass, number)
Objectives

- Reference materials for ENP in food
- Validated methods for nanoparticles (NP) in food matrix
 - Different scenarios: migration, addition, nano-fraction of additives, environmental contamination
 - Different NP classes
 - metals (Ag)
 - oxides (SiO$_2$)
 - carbon NP (C$_{60}$)
 - organic NP (nano-carrier systems, encapsulates)
Dual Concept

Imaging (in matrix), screening (WP2)
- detection (yes/no)
- rapid, high throughput, cost efficient, robust

Confirmatory methods
(WP3 inorganic NP, WP4 org. NP)
- unambiguous identification
- quantification
WP1: Reference materials

- Supply of characterised ENP suspensions
 - Ag, SiO$_2$, C$_{60}$, x-linked gelatine NP
- Synthesis of labelled analogues
 - Au-labelled Ag and Ge-labelled SiO$_2$ produced
 - use as internal/recovery standards

- Method validation approach for ENP in food
 - in press, comments via website
 - goal: harmonised validation guidelines for NP analysis (analogous to 2002/657/EC)
WP1: Reference materials in matrix

Ag in chicken meat
 • Transfer from food contact material

SiO$_2$ in tomato soup
 • Use of addititves (E551)

C$_{60}$ in edible oil
 • Enrichment from environmental contamination

Organic NP in beverage
 • Addition of encapsulated ingredients (vitamins, colourants, antioxidants)
WP2: Imaging

Electron microscopy

- SEM and TEM (+ EDX) methods for Ag NP (meat) + SiO_2 NP (soup)

Sample prep

- Comparison of different methods: blotting, ultra-centrifugation, air/freeze/chemical drying, resin embedding

Image analysis

- Automated image analysis required
- object-based software prototype
WP2: Screening

SPR Biosensor assays
- Ag NP (metallothionein based)
- organic NP (antibody based)

ELISA
- specific antibodies raised
- sandwich ELISA developed for X-linked gelatine and β-lactoglobuline NP
WP3: Inorganic NP

FFF-multidetector approach for Ag + SiO$_2$

I) sample preparation
- extraction, digestion

II) asymmetric flow field-flow fractionation (AF4)
- particle separation according to their size (1nm – few µm)

III) optical detection
- multi angle (MALS) and dynamic light scattering (DLS), UV-vis absorption
- particle detection (fractogram)
- size determination

III) inductively coupled plasma mass spectrometry (ICP-MS)
- elemental detection
- chemical identity quantification
- mass fraction

separation of particles from matrix material

S. Weigel, 5 Years Nanotechnology dialogue, Brussels 19 Oct. 2012
WP3: Inorganic NP

Single particle ICP-MS approach for Ag

- sp ICP-MS: element specific particle counting method
- addressing the EC recommendation for a definition in best possible way
- relatively easy to implement, use of existing instruments
- accepted as ISO work item (joint JWG2/3 project)
WP4: Organic NP

HPLC-MS

- Fullerenes (C_{60}, C_{70}) in food

HDC-UV-MALDI-ToF-MS

- size separation, characterization, identification of organic ENPs (fingerprinting)

DPPC: L-α-dipalmitoylphosphatidylcholine
DPPG: L-α-dipalmitoylphosphatidylglycerol
Part of the shell material of the Coatsome ENP

Coatsome

“Micelle A”

Cross-linked gelatine
Current status

- Most methods in validation phase/validated
- Standard Operation Procedures (SOPs) in preparation (will be available for download)
Current status

- **Interlab studies**
 - spICP-MS (full ILC)
 - Ag in food simulants: running
 - Ag in meat: scheduled April 2013
 - FFF (intra-project ILC)
 - SiO2, Ag: scheduled March 2013
- **Training workshops (hands-on) planned**
 - sp ICP-MS: March 2013
 - Multidetector FFF: April 2013
Conclusions and outlook I

- More information needed on actual applications of nanomaterials in the food sector
 - more targeted method development
- Suitable platform technologies for inorganic NP in food are EM, multidetector FFF, sp ICP-MS
- Organic NP are more difficult to measure due to their fragile nature and similarity of their building blocks with food components
Conclusions and outlook II

- Interaction of NP with food matrix still poorly understood
 - difficulties for matrix reference materials
- Sample preparation essential
- Sound method validation is crucial
 - certified reference materials
 - harmonised validation guidelines
- In the food area analytical methods not only needed for safety assessment, but also for product development and quality assurance
The work leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 245162.

contact: stefan.weigel@wur.nl